Aerodynamics and blade flutter intelligent simulation of propeller vehicle under different wing angle
Leilei Yu (),
Zongjie Cao () and
Shuai Yang ()
Additional contact information
Leilei Yu: Aviation University Air Force
Zongjie Cao: Aviation University Air Force
Shuai Yang: Unit 78102
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 2, No 16, 657-669
Abstract:
Abstract In recent years, with the development of aerospace field, composite materials show its importance and particularity in many fields and have a wide range of application potential because of its light weight structure. The application of composite materials to UAV blades can reduce the structural weight and improve the impact resistance. The mechanical properties, damage performance and failure mechanism of laminate under high strain rate are the fundaments for high-speed impact mechanics analysis. In this paper, a kind of fiber composite blade is designed independently, and the optimal laying angle is determined. Fluent is selected as the CFD calculation software to carry out the fluid–solid coupling analysis of the composite fixed wing. By changing the wing angle (0°, 10°, 17°, 24°), the flutter performance of the fixed wing under the condition of 45 m/s velocity flow is studied. The results show that the laminated laminate designed in this paper has longer action time under impact load, better protection for structure and better effect of resisting impact, and the trend and inflection point of stress and deformation of fixed wing are similar. Flutter occurs, the stress on the lower side of the fixed wing is larger than that on the upper side, and the stress on the outside is larger than that on the inside, and with the increase of time, the stress gradually spreads to both sides along the direction of the fixed wing. There is no correlation between the stress and strain of the fixed blade, and there is a threshold for the wing angle. When the wing angle is 10°, the blade has the smallest strain and the strongest wind resistance.
Keywords: Fixed wing; Composite material; Wing angle; Flutter; Impact; Intelligent (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01457-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:2:d:10.1007_s13198-021-01457-5
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01457-5
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().