Target location detection of mobile robots based on R-FCN deep convolutional neural network
Hua Cen ()
Additional contact information
Hua Cen: Guangxi Modern Polytechnic College
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 2, No 23, 728-737
Abstract:
Abstract In order to improve the target location detection effect of mobile robots, this paper combines convolutional neural network and recurrent neural network to construct a model for solving abnormal sound event detection. Moreover, this paper constructs a convolutional neural network architecture suitable for feature extraction of audio signals, uses the recurrent neural network to classify each frame of audio signals, and applies the improved R-FCN deep convolutional neural network to the target location detection of mobile robots. In addition, this article uses Matlab to carry out system simulation construction, and design and use the system to carry out performance verification. Through experimental research, it can be seen that the target location system of mobile robot based on R-FCN deep convolutional neural network constructed in this paper can effectively improve the location speed and location accuracy compared with traditional location systems.
Keywords: R-FCN deep convolutional neural network; Mobile robot; Target location; Intelligent algorithm (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01514-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:2:d:10.1007_s13198-021-01514-z
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01514-z
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().