Performance analysis of regression algorithms and feature selection techniques to predict PM2.5 in smart cities
Alisha Banga (),
Ravinder Ahuja () and
Subhash Chander Sharma ()
Additional contact information
Alisha Banga: Indian Institute of Technology Roorkee Saharanpur Campus
Ravinder Ahuja: Indian Institute of Technology Roorkee Saharanpur Campus
Subhash Chander Sharma: Indian Institute of Technology Roorkee Saharanpur Campus
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 3, No 3, 732-745
Abstract:
Abstract With an increase in the urban population, environmental pollution is drastically increased. Air pollution is one of the significant issues in smart cities. The higher value of PM2.5 can cause various health issues like respiratory disease, heart attack, lung disease, and fatigue. Predicting PM2.5 can help the administration to warn people at risk and make scientific measures to reduce pollution. Existing work has utilized various regression models to predict air pollution; however, different feature selection techniques with the regression algorithm have not yet been explored. This paper has implemented five feature selection techniques (namely, Recursive Feature Elimination, Analysis of Variance, Random Forest, Variance Threshold, and Light Gradient Boosting) to select the best features. Further, six regression algorithms and ensemble models (Extra Tree, Decision Tree, XGBoost, Random Forest, Light GBM, and AdaBoost) are applied to predict PM2.5 using python language on the dataset of five cities of China. The models are compared based on the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2 parameters. We observed that the AdaBoost algorithm with the Light GBM feature selection technique gives the highest performance among all the five datasets. The highest performance values (MAE 0.07, RMSE 0.14, and R2 0.94) are given by the AdaBoost algorithm with LightGBM feature selection on the Chengdu dataset. The computed feature importance has shown that humidity, cbwd, dew point, and pressure play an essential role in air pollution.
Keywords: AQI; Regression models; PM2.5; Machine learning; Smart city (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-020-01049-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:3:d:10.1007_s13198-020-01049-9
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-020-01049-9
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().