Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition
Bahareh Tajiani () and
Jørn Vatn
Additional contact information
Bahareh Tajiani: Norwegian University of Science and Technology (NTNU)
Jørn Vatn: Norwegian University of Science and Technology (NTNU)
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 5, No 13, 1756-1777
Abstract:
Abstract Deterioration modelling and remaining useful life (RUL) prediction of roller bearings is critical to ensure a safe, reliable, and efficient operation of rotating machinery. RUL prediction models in model-based approaches are often based on constant failure threshold and time-domain features for bearings’ failure prognosis. Due to nonlinearity of the acceleration signals, noises, and measurement errors, the time-domain features used as condition indicators are unable to track bearings’ degradation successfully and they are mostly utilized for fault diagnosis, especially in the fault classification field using machine learning algorithms. This paper proposes an adaptive RUL prediction framework with a stochastic failure threshold which comprises of two main phases of feature extraction and RUL prediction using laboratory-acquired accelerated life test data obtained from contaminated bearings. The first phase is to decompose the empirical input signals into different frequency bands using some time–frequency transformation functions and extract several condition indicators for the second phase. The second phase is based on a stochastic Wiener process while the key parameters of the model are updated iteratively using a Bayesian approach, and RUL at different degradation datapoints is computed numerically. The experimental results showed the good performance of the developed framework. Some factors affecting RUL prediction such as the length of bearing samples, and degradation mechanism are highlighted in the result. The results of this paper can be further used for an effective maintenance optimization, determining an optimal maintenance alarm threshold, improving the reliability and safety of rotating machinery, and reducing the downtime cost.
Keywords: Remaining useful life; Bearing; Prognosis; Stochastic modeling; Bayesian inference; Accelerated life tests; Rotating equipment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-023-01979-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:5:d:10.1007_s13198-023-01979-0
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-023-01979-0
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().