Load frequency control with moth-flame optimizer algorithm tuned 2-DOF-PID controller of the interconnected unequal three area power system with and without non-linearity
Neelesh Kumar Gupta (),
Arun kumar Singh and
Rabindra Nath Mahanty
Additional contact information
Neelesh Kumar Gupta: NIT Jamshedpur
Arun kumar Singh: NIT Jamshedpur
Rabindra Nath Mahanty: NIT Jamshedpur
International Journal of System Assurance Engineering and Management, 2023, vol. 14, issue 5, No 25, 1912-1932
Abstract:
Abstract This study proposes a two-degree-of-freedom PID controller based on the moth flame optimizer (MFO) algorithm for the load frequency management issue in a three-area unequal linked power system. Load frequency control is use to control the frequency of the grid to its scheduled value in the power system. A objective function is formulated in the LFC which will be utilized by the optimization techniques for the tuning of the parameter of the controller. The proposed controller’s efficiency is tested by contrasting it’s response with outcome of PID and fractional order PID (FOPID) for various scenario. The suggested controller’s parameters were concurrently tuned using a meta-heuristic approach called moth flam optimizer (MFO). The simulation result with MFO appraised with other optimizer like SCA (Sine–cosine algorithm), SSA (Slap swarm algorithm), PSO (Particle swarm optimization algorithm), ALO (Ant-lion optimization algorithm) for the various scenarios. The superiority of proposed techniques is further examine by including system non-linearity like governor Dead Band, generation Rate Constraint, and communication delay. Furthermore, to validate the supremacy of the suggested method, the statistical analysis with the help of Wilcoxon Sign Rank Test has been performed on 20 independent runs. The result gained through broad simulation states that the proposed tactic undoubtedly intensify the system performance compare to prevailing controllers and optimization technique in the existing literature.
Keywords: Moth-flam optimization; WSRT; Statistical analysis; Load frequency control; Two degree of freedom PID controller (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-023-02021-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:14:y:2023:i:5:d:10.1007_s13198-023-02021-z
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-023-02021-z
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().