Early and accurate prediction of diabetics based on FCBF feature selection and SMOTE
Amit Kishor () and
Chinmay Chakraborty ()
Additional contact information
Amit Kishor: Swami Vivekanand Subharti University
Chinmay Chakraborty: BIT Mesra
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 10, No 1, 4649-4657
Abstract:
Abstract Diabetes is a chronic hyperglycemic disorder. Every year hundreds of millions of people around the world have diabetes. The presence of irrelevant features and an imbalanced dataset are significant issues to train the model. The availability of patient medical records quantifies symptoms, body characteristics, and clinical laboratory test values that can be used in the study of biostatistics aimed at identifying patterns or characteristics that cannot be detected by current practice. This work proposes a machine learning-based healthcare model for accurate and early detection of diabetics. Five machine learning classifiers such as logistic regression, K-nearest neighbor, Naïve Bayes, random forest, and support vector machine are used. Fast correlation-based filter feature selection is used to remove the irrelevant features. The synthetic minority over-sampling technique is used to balance the imbalanced dataset. The model is evaluated with four performance measuring matrices: accuracy, sensitivity, specificity, and area under the curve (AUC). An experimental outcome shows few relevant features are needed to enhance the accuracy of the developed model. The RF classifier achieves the highest accuracy, sensitivity, specificity, and AUC of 97.81%, 99.32%, 98.86%, and 99.35%.
Keywords: Machine learning; Feature selection; Diabetes; FCBF; SMOTE (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-021-01174-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-021-01174-z
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-021-01174-z
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().