EconPapers    
Economics at your fingertips  
 

Vision-based gait analysis to detect Parkinson’s disease using hybrid Harris hawks and Arithmetic optimization algorithm with Random Forest classifier

Sankara Rao Palla (), Priyadarsan Parida () and Gupteswar Sahu ()
Additional contact information
Sankara Rao Palla: GIET University
Priyadarsan Parida: GIET University
Gupteswar Sahu: Raghu Engineering College

International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 10, No 19, 4982-4999

Abstract: Abstract Parkinson’s disease (PD) is the second most prevalent long-term progressive neurodegenerative disease after Alzheimer’s. Individuals with PD experience tremors, rigidity, difficulty maintaining balance, and coordination of motion. Typically, the symptoms manifest gradually and worsen over time. As the condition progresses, individuals may experience difficulty in both movement and verbal communication. In order to employ the most effective treatment, gait analysis is regarded as one of the most important approaches to identifying and evaluating the presence of PD. Therefore, selecting the most optimal gait features for the purpose of detecting PD is a challenging endeavor. In today’s computing environment, several strategies are required to solve various challenges. Metaheuristic algorithms represent a category of methodologies that possess the ability to offer pragmatic resolutions to such challenges in various fields. In this study, we present a robust hybrid Harris Hawks and Arithmetic optimization algorithm (Hybrid HH-AO Algorithm) with a Random Forest (RF) classifier to choose the optimal gait features and classify normal and abnormal individuals. The proposed approach has been evaluated on the benchmark INIT Gait database. The proposed approach achieves a better accuracy of 98.12%, sensitivity of 99.26%, specificity of 92.00%, precision of 98.53%, and F1-score of 98.89% using an RF classifier on the Gradient Gait Energy Image (GGEI) template. The experimental results show that our proposed method can accurately distinguish PD patients’ gait patterns from healthy people with a high classification rate.

Keywords: Gait analysis; Gradient gait energy image; Parkinson’s disease; Harris hawks optimization; Arithmetic optimization; Random forest classifier (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02508-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02508-3

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-024-02508-3

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02508-3