Effective ensembling classification strategy for voice and emotion recognition
Yasser Alharbi ()
Additional contact information
Yasser Alharbi: University of Hail
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 1, No 30, 334-345
Abstract:
Abstract Nowadays, Machine learning techniques are found to be unique among the most effective approaches for Voice and Emotion Recognition (VER). Moreover, automatic recognition of voice and emotions is essential for smooth psychosocial interactions between humans and machines. There have been huge strides in creating workable pieces of art that combine spectrogram and deep learning characteristics in the VER research. On the other hand, although single Machine Learning (ML) methods deliver acceptable results, it's not quite reaching the standards yet. This necessitates the development of strategies that use various ML techniques, target multiple aspects and elements of voice recognition. This article proposes an ensembling classifier model that incorporates the outcome of base classifiers (CapsNet and RNNs) for VER. The CapsNet model can identify the spatial correlation of vital speech information in spectrograms using a pooling technique. The RNN, on the other hand, is excellent for processing time-series datasets, and both are well known for their performance in classification work. Stacked generalization is used for constructing ensemble classifiers that integrate predictions made by CapsNet and RNN classifiers. As much as 96.05% of overall accuracy is obtained when using this ensemble approach, which is more effective than either CapsNets or RNN when individually compared. One of the significant benefits of the proposed classifier is that it effectively detects the emotional class 'FEAR', with a recognition rate of 96.68% among seven other classes.
Keywords: VER; Recognition; CapsNet; R-LSTM; Ensemble learning; Accuracy; Emotion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01729-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01729-8
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-022-01729-8
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().