Machine learning based fault-oriented predictive maintenance in industry 4.0
Vivek Justus () and
G. R. Kanagachidambaresan ()
Additional contact information
Vivek Justus: Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology
G. R. Kanagachidambaresan: Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 1, No 40, 462-474
Abstract:
Abstract Manufacturing ecosystems that are real-time, smart, transparent, and self-reliant are the goal of the 4th industrialized renaissance (Industry 4.0). Industry 4.0 relies heavily on a well-functioning network and computing infrastructure to function at its optimum potential. An influential Industry 4.0 platform relies heavily on solitary chip computing and machine learning (ML) techniques. With Industry 4.0, the ability to identify malfunctions is critical because of the self-optimized functioning of equipment and the abundance of significant information gathered. This paper proposes an efficient and powerful ML model, namely CNN-BLSTM (Convolution Neural Network Bi-Directional Long Short-Term Memory) based fault prognosis assessment of machinery in Industry 4.0 ecosystem. Machine characteristics such as temperature, vibration, and pressure can be controlled using smart objects like actuators and sensors embedded in industrial machinery's practicality processes. This method allows for more thorough and effective diagnosis of machinery. All three variants of faults, namely transient, intermittent, and permanent, are considered. The identified evidence in this investigation reveals that our technique has a significant capability to handle unfavorable consequences due to manufacturing faults in contrast to existing strategies.
Keywords: CNN-BLSTM; Industry 4.0; Fault diagnosis; Prognosis; Accuracy; MIMII; LPC; Manufacturing ecosystem (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01777-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01777-0
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-022-01777-0
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().