EconPapers    
Economics at your fingertips  
 

Inter project defect classification based on word embedding

Sushil Kumar (), Meera Sharma (), S. K. Muttoo () and V. B. Singh ()
Additional contact information
Sushil Kumar: University of Delhi
Meera Sharma: University of Delhi
S. K. Muttoo: University of Delhi
V. B. Singh: Jawaharlal Nehru University

International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 2, No 5, 634 pages

Abstract: Abstract Defect classification is a process to classify defects based on predefined categories. It is time consuming and manual process. Many automatic defect classification methods have been proposed to speed up the process of defect classification. However, these methods have not utilized the inter relations among the defect reports. In the literature for defect classification, Term Frequency-Inverse Document Frequency and Bag of words based approaches have been proposed. In this paper, we have proposed word embedding based model for the defect classification which is proven to be better in comparison with the existing methods. We have also proposed models for inter project defect classification by considering combination of different datasets of the same domain. We tested the proposed approach on 4096 defect reports using K nearest neighbor, Random forest, Decision tree, Support vector machine, Stochastic gradient descent and Ada boost classifiers in terms of accuracy, precision, recall and F1-score. Experimental results show that Decision tree achieves highest accuracy 98.21% while trained and tested on GloVe word embedding. We have also generated new word embedding using the bug reports corpus. Further, we compare the proposed model with Lopes et.al., 2020 and results show that our model outperforms.

Keywords: Word embedding; Orthogonal defect classification; Word2vec; GloVe; Automatic classification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-022-01686-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:2:d:10.1007_s13198-022-01686-2

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-022-01686-2

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:ijsaem:v:15:y:2024:i:2:d:10.1007_s13198-022-01686-2