EconPapers    
Economics at your fingertips  
 

Deep learning based active image steganalysis: a review

Punam Bedi (), Anuradha Singhal () and Veenu Bhasin ()
Additional contact information
Punam Bedi: University of Delhi
Anuradha Singhal: University of Delhi
Veenu Bhasin: University of Delhi

International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 3, No 2, 786-799

Abstract: Abstract Steganalysis plays a vital role in cybersecurity in today’s digital era where exchange of malicious information can be done easily across web pages. Steganography techniques are used to hide data in an object where the existence of hidden information is also obscured. Steganalysis is the process for detection of steganography within an object and can be categorized as active and passive steganalysis. Passive steganalysis tries to classify a given object as a clean or modified object. Active steganalysis aims to extract more details about hidden contents such as length of embedded message, region of inserted message, key used for embedding, required by cybersecurity experts for comprehensive analysis. Images being a viable source of exchange of information in the era of internet, social media are the most susceptible source for such transmission. Many researchers have worked and developed techniques required to detect and alert about such counterfeit exchanges over the internet. Literature present in passive and active image steganalysis techniques, addresses these issues by detecting and unveiling details of such obscured communication respectively. This paper provides a systematic and comprehensive review of work done on active image steganalysis techniques using deep learning techniques. This review will be helpful to the new researchers to become aware and build a strong foundation of literature present in active image steganalysis using deep learning techniques. The paper also includes various steganographic algorithms, dataset and performance evaluation metrics used in literature. Open research challenges and possible future research directions are also discussed in the paper.

Keywords: Information security; Cybersecurity; Steganalysis; Machine learning; Deep learning; Active image steganalysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-023-02203-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02203-9

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-023-02203-9

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:ijsaem:v:15:y:2024:i:3:d:10.1007_s13198-023-02203-9