QoS based scheduling mechanism for electrical vehicles in cloud-assisted VANET using deep RNN
Shivanand C. Hiremath () and
Jayashree D. Mallapur
Additional contact information
Shivanand C. Hiremath: S. G. Balekundri Institute of Technology
Jayashree D. Mallapur: Basaveshwar Engineering College
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 6, No 44, 2587 pages
Abstract:
Abstract A charge scheduling strategy is a robust approach to schedule the charging strategies in electric vehicles (EVs) from a broad perspective with the aim of evading the overloading of charging stations and enhancing energy efficiency. However, devising an effective charging scheduling schemefor attaining optimal energy consumption still prevails as a complicated problem, particularly while considering the synchronized behavior of both charging stations as well as EVs. Here, a robust QoS-based charge scheduling approach was developed, which exploits the vehicular Adhoc networks (VANETs) with the improved functionalities for enabling communication between the vehicle-traffic server, road-side units (RSUs), and various EVs on roads. An optimal routing is performed by the Fractional-social sky driver (Fractional SSD), which is devised by the incorporation of the Fractional calculus (FC) and social sky driver (SSD) optimization. Here, the multi-objectives, namely, distance, battery power, and predicted traffic density are considered where the traffic density is effectively predicted using deep recurrent neural network (Deep RNN). Then, the charge scheduling process is executed by the utilization of the developed optimization technique called Fractional-social water cycle algorithm (Fractional SWCA)-based scheduling algorithm by taking into account the QoS-based fitness objective, likepriority, response time, and latency. Moreover, the proposed Fractional SWCA is developed by the integration of fractional SSD and water cycle algorithm (WCA). The performance of the devisedscheme is evaluated withmeasures, like metrics, delay, traffic density, fitness, total trip time, percentage of successful allocation, and power with the values of 8.429 min, 4.8 per lane, 24.571, 49.421 min, 94.494%, and 14,135.72 J.
Keywords: VANET; Electric vehicle; Cloud server; Optimal routing; Charge scheduling (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02277-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:6:d:10.1007_s13198-024-02277-z
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-024-02277-z
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().