Applying machine learning models on blockchain platform selection
Chhaya Dubey (),
Dharmendra Kumar (),
Ashutosh Kumar Singh () and
Vijay Kumar Dwivedi ()
Additional contact information
Chhaya Dubey: United College of Engineering and Research
Dharmendra Kumar: United College of Engineering and Research
Ashutosh Kumar Singh: United College of Engineering and Research
Vijay Kumar Dwivedi: United College of Engineering and Research
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 8, No 8, 3643-3656
Abstract:
Abstract Recently, technology like Blockchain is gaining attention all over the world today, because it provides a secure, decentralized framework for all types of commercial interactions. When choosing the optimal blockchain platform, one needs to consider its usefulness, adaptability, and compatibility with existing software. Because novice software engineers and developers are not experts in every discipline, they should seek advice from outside experts or educate themselves. As the number of decision-makers, choices, and criteria grows, the decision-making process becomes increasingly complicated. The success of Bitcoin has spiked the demand for blockchain-based solutions in different domains in the sector such as health, education, energy, etc. Organizations, researchers, government bodies, etc. are moving towards more secure and accountable technology to build trust and reliability. In this paper, we introduce a model for the prediction of blockchain development platforms (Hyperledger, Ethereum, Corda, Stellar, Bitcoin, etc.). The proposed work utilizes multiple data sets based on blockchain development platforms and applies various traditional Machine Learning classification techniques. The obtained results show that models like Decision Tree and Random Forest have outperformed other traditional classification models concerning multiple data sets with 100% accuracy.
Keywords: Hyper-ledger; Ethereum; Blockchain; Platforms (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02363-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02363-2
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-024-02363-2
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().