Exact reliability formula for precision agriculture through copula repair approach
Praveen Kumar Poonia ()
Additional contact information
Praveen Kumar Poonia: University of Technology and Applied Sciences
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 8, No 13, 3725-3736
Abstract:
Abstract The Gumbel-Hougaard family’s invention of copula distribution paved the way for new research, and it has been widely applied in recent years to a range of series–parallel multi-state complicated engineering systems, but not to agricultural applications. Recent study undertaken by a variety of organizations reveals that food grain production is not keeping up with population growth. Many technocrats use wireless sensing networks to collect and analyze data to increase production; nevertheless, by focusing on general repair, they fall short of their goal. To avoid this problem and restore the broken system as soon as achievable, in this paper we have developed a reliability formula in a way that numerical solutions can be obtained systematically in a reasonable computational time for precision agriculture that makes use of the copula distribution. This paper aims to analyze the various reliability measures such as availability, reliability, mean time to failure, and cost analysis of a wireless computer network for precision agriculture made up of three subsystems in series configuration. Hazard rates of all the units are assumed to be constant and follow exponential distribution, while repair supports general distribution and copula distribution. The system is analyzed by supplementary variable technique, Laplace transformation and Gumbel-Hougaard copula distribution. This paper we have used a significant feature of copula distribution under catastrophic failure by assuming two different forms of failure between neighboring transitions from which one can check the behavioral analysis of the designed system. This research may be beneficial for precision agriculture whereas a k-out-of-n-type configuration exists.
Keywords: Precision agriculture; wireless nodes; k-out-of-n; G system; Sensitivity; Catastrophic failure; Gumbel-Hougaard family copula distribution; 90B25 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02372-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02372-1
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-024-02372-1
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().