A review of wire and arc additive manufacturing using different property characterization, challenges and future trends
Jyothi Padmaja Koduru (),
T. Vijay Kumar () and
Kedar Mallik Mantrala ()
Additional contact information
Jyothi Padmaja Koduru: Koneru Lakshmaiah Education Foundation (KLEF)
T. Vijay Kumar: Koneru Lakshmaiah Education Foundation (KLEF)
Kedar Mallik Mantrala: Vasireddy Venkatadri Institute of Technology
International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 9, No 21, 4563-4581
Abstract:
Abstract Because of the reasonability of economically generating large-scale metal equipment with a very large rate of deposition, important development has been conducted in the learning of the “wire arc additive manufacturing (WAAM)” approach also the mechanical and microstructure features of the fabricated elements. The WAAM has emerged highly so the large range of the materials has accompanied the operation and its development fighting. It has enhanced as a very significant mechanism for the large metal equipment in various manufacturing organizations. Because of its arc-assisted deposition, high process cycle time, process stability, defect monitoring, and management are severe for the WAAM device to be employed in the organization. High improvements have been performed in the development of the process, control system, comprehensive operation monitoring, material evaluation, path slicing, and programming but still, it demands the improvement. Therefore, this article aims to give a detailed review of the WAAM systems to facilitate an easy and quick understanding of the current status and future prospects of WAAM. The stage-wise implementation of WAAM, usage of metals and alloys, process parameter effects, and methodologies used for improving the quality of WAAM components are discussed. The usage of hardware systems and technological parameters used for understanding the physical mechanism are also described in this research work. In addition, the monitoring systems such as acoustic sensing, optical inspection, thermal sensing, electrical sensing, and multi-sensor sensing are analyzed and the property characterization techniques also be evaluated in this study. On the other hand, the additive as well as the subtractive technologies and the artificial intelligence techniques utilized for improving the manufacturing level are discussed. Finally, the possible future research directions are provided for making further developments in WAAM by the researchers.
Keywords: Wire and arc additive manufacturing; Hardware systems; Utilized metals; Property characterization; Essential parameters; Process monitoring; Challenges and research trends (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02472-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02472-y
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-024-02472-y
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().