EconPapers    
Economics at your fingertips  
 

The detection method of continuous outliers in complex network data streams based on C-LSTM

Zhinian Shu () and Xiaorong Li ()
Additional contact information
Zhinian Shu: Chaohu University
Xiaorong Li: Chaohu University

International Journal of System Assurance Engineering and Management, 2024, vol. 15, issue 9, No 22, 4582-4593

Abstract: Abstract To enhance the effective detection of abnormal points in complex network data flow, perform multi-dimensional dynamic detection, and establish a more stable and reliable data flow abnormal detection method, a continuous abnormal point detection method for complex network data flow based on C-LSTM is proposed. The features of continuous outliers in complex network data streams are extracted, and a data anomaly detection model is established according to the features. The input features of continuous outliers in complex network data streams are qualitatively and quantitatively transformed into multi-scale anomalies, and the outlier detection based on C-LSTM is realized. The experimental results show that the maximum sensitivity of the proposed method reaches 42%, and the average routing overhead is less than 24 Mb. Regardless of the data in any scenario, the detection accuracy is higher than 0.92, the recall is higher than 0.81, and the F1 value is higher than 0.62. Although there may be some misjudgments or omissions due to noise, the overall detection performance is good.

Keywords: C-LSTM; Complex network; Data flow; Continuous outliers; Detection method (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-024-02475-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02475-9

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-024-02475-9

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02475-9