EconPapers    
Economics at your fingertips  
 

Access the cluster tendency by visual methods for robust speech clustering

T. Suneetha Rani () and M. H. M. Krishna Prasad ()
Additional contact information
T. Suneetha Rani: JNTUK
M. H. M. Krishna Prasad: JNTUK

International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 1, No 43, 465-477

Abstract: Abstract Identifying the cues for speech segments of speech data is an indispensable task in speaker clustering. The existing techniques perform the task of speech clustering without any prior knowledge of cluster tendency. Many techniques are investigated for finding a prior cluster tendency (CT). During the investigation, the visual access tendency (VAT) is recognized as a reasonable choice to find a cluster tendency. The speech clustering poses three important problems, which are as follows: modelling the speech data, cluster tendency, and effective speech clustering. Modelling is required for defining the shape of the speech segment based on the characteristics of speaker’s voice; hence it is useful for speech recognition. The GMM is a good choice for obtaining the precise model of speech data. Determining the number of speakers (or number of clusters) for the speech is known as cluster tendency. The quality of speech clustering depends on modelling and a prior clustering tendency. The classical algorithms [such as k-means, and minimum spanning tree (MST)-based-clustering] are merged with VAT for determining the effective clustering results along with a prior cluster tendency. We use linear subspace learning for representing the speech segments (or speech utterances) in a projected space of high-dimensional data. Various linear subspace learning techniques are used for improving the speech clustering results. The proposed approaches are hybrid approaches (i.e., k-means-CT, and MST–CT-based clustering), they use expensive steps. For this key reason, we propose another method, direct visualized clustering method, in which we derive the explicit speaker clustering results directly from VAT instead of using either k-means or MST-based clustering. We experimented the proposed methods on TSP speech datasets and done the comparative study for demonstrating the effectiveness of our work.

Keywords: Speech clustering; k-means; MST-based clustering; VAT; GMM (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-015-0393-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0393-z

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-015-0393-z

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:8:y:2017:i:1:d:10.1007_s13198-015-0393-z