EconPapers    
Economics at your fingertips  
 

Empirical analysis of metrics for object oriented multidimensional model of data warehouse using unsupervised machine learning techniques

Sangeeta Sabharwal (), Sushama Nagpal () and Gargi Aggarwal ()
Additional contact information
Sangeeta Sabharwal: NSIT
Sushama Nagpal: NSIT
Gargi Aggarwal: NSIT

International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 2, No 14, 703-715

Abstract: Abstract Data Warehouse provides the foundation for businesses to take informed decisions for day to day operations and making future strategy. Since the role is so pivotal to the growth and success of the business, its quality is very critical. Conceptual models of data warehouses give us a great insight into the quality of the developed system during the early stages of the design process. Researchers have proposed a number of metrics to evaluate the quality of these object oriented multidimensional models. Further, for these metrics to be used in practice, empirical evaluation is crucial. There are a number of propositions in literature that work towards empirical validation of metrics. But most of them are either restricted to statistical techniques or supervised machine learning techniques. In order to empirically validate the metrics, we need to get user responses for a number of schemas and take down observations to quantify model quality aspects like understandability, efficiency etc. This can result in personal biases, errors and random outliers which impacts the evaluation model. In this paper, we have made a first attempt to assess the relationship between the object oriented multidimensional data warehouse structural metrics and understandability of its models by using unsupervised machine learning techniques with the aid of a data warehouse quality expert. The results indicate that the proposed metrics have a strong relationship with understandability and inturn quality of the data warehouse conceptual models and the unsupervised techniques are able to identify this relationship with high degree of accuracy.

Keywords: K-means clustering; Hierarchical clustering; Understandability; Data warehouse quality; Metrics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13198-016-0508-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0508-1

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-016-0508-1

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0508-1