EconPapers    
Economics at your fingertips  
 

Software maintainability prediction using hybrid neural network and fuzzy logic approach with parallel computing concept

Lov Kumar () and Santanu Ku Rath ()
Additional contact information
Lov Kumar: National Institute of Technology
Santanu Ku Rath: National Institute of Technology

International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 2, No 74, 1487-1502

Abstract: Abstract In present day scenario, majority of software companies use object-oriented concept to develop software systems as it enables effective design, development, testing and maintenance, in addition to the optimal characterization of the software system. With the increase in number of these software systems, their effective maintenance aspect becomes very important day by day. In this study, Neuro-Fuzzy approach: hybrid neural network and fuzzy logic approach has been considered to develop a maintainability model using ten different object-oriented static source code metrics as input. This method is applied on maintainability data of two commercial software products such as UIMS and QUES. Rough set analysis (RSA) and principal component analysis (PCA) are used to select suitable set of metrics from the ten metrics employed to improve performance of maintainability prediction model. From experimental results, it is observed that Neuro-Fuzzy model can effectively predict the maintainability of object-oriented software systems. After implementing parallel computing concept, it is observed that the training time gets reduced to a significant amount when the number of computing nodes were increased. Further it is observed that selected subset of metrics using feature selection techniques i.e., PCA, and RSA was able to predict maintainability with higher accuracy.

Keywords: Artificial neural network; Fuzzy Logic; Source code metrics; Maintainability; Parallel computing (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s13198-017-0618-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0618-4

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-017-0618-4

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-20
Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0618-4