Face milling tool condition monitoring using sound signal
C. K. Madhusudana,
Hemantha Kumar () and
S. Narendranath
Additional contact information
C. K. Madhusudana: National Institute of Technology Karnataka
Hemantha Kumar: National Institute of Technology Karnataka
S. Narendranath: National Institute of Technology Karnataka
International Journal of System Assurance Engineering and Management, 2017, vol. 8, issue 2, No 86, 1643-1653
Abstract:
Abstract This article presents the fault diagnosis of the face milling tool using sound signal. During milling, sound signals of the face milling tool under healthy and fault conditions are acquired. Discrete wavelet transform (DWT) features are extracted from the acquired sound signals. The support vector machine (SVM) technique is used to classify the face milling tool conditions using the extracted DWT features. Also, a comparison of classification efficiencies of different classifiers with respect to different features extraction methods is carried out. It is shown that, all extracted DWT features demonstrate better results than those obtained from selected statistical features and empirical mode decomposition features. The SVM technique is the best classifier as it has given an encouraging result in this study when compared to other classifiers, and it has provided 83% classification accuracy for the given experimental conditions and workpiece of steel alloy 42CrMo4. Hence, the SVM method and DWT technique can be put forward for the applications of condition monitoring of the face milling tool with sound signal.
Keywords: Face milling; Fault diagnosis; Sound signal; Discrete wavelet transform; Decision tree; Support vector machine (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-017-0637-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0637-1
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-017-0637-1
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().