EconPapers    
Economics at your fingertips  
 

Matching images captured from unmanned aerial vehicle

Steven Lawrence Fernandes () and G. Josemin Bala
Additional contact information
Steven Lawrence Fernandes: Karunya University
G. Josemin Bala: Karunya University

International Journal of System Assurance Engineering and Management, 2018, vol. 9, issue 1, No 5, 26-32

Abstract: Abstract Police database cannot have images of first-time offenders; hence, apprehending them becomes a very challenging task. In this paper, we propose a novel technique to apprehend first-time offenders using composite sketches and images captured by unmanned aerial vehicles. The key contribution of this paper is we have developed a new technology to match composite sketches with images captured by unmanned aerial vehicle to apprehend first-time criminals in a very short time period. The unmanned aerial vehicle is sent in the area where the first-time offender is likely to be present. The image captured by unmanned aerial vehicle is passed to face detection module so that only human faces are obtained. Feature extraction is performed using multi-resolution uniform local binary pattern, and classification is performed using dictionary matching. This proposed method is validated by composite sketches generated using SketchCop FACETTE face design system software and images captured by Phantom 3 professional unmanned aerial vehicle.

Keywords: Composite sketches; Local binary pattern; Dictionary matching (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s13198-016-0431-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0431-5

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-016-0431-5

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0431-5