Identification of noise in multi noise plant using enhanced version of shuffled frog leaping algorithm
Tarun Kumar Sharma () and
Millie Pant ()
Additional contact information
Tarun Kumar Sharma: Amity University Rajasthan
Millie Pant: IIT Roorkee
International Journal of System Assurance Engineering and Management, 2018, vol. 9, issue 1, No 7, 43-51
Abstract:
Abstract In any factory or industry the high level noise can be very harmful to the employees. As investigated by Occupational Safety and Health Act of 1970, the high level noise not only causes physiological ailments in employees but also causes harmful environment in the neighborhood. Therefore it becomes essential to control the noise levels in any manufacturing plant or industry. This can be achieved by optimal allocation of noise equipment which is quite not easy to recognize the exact location. In this study a shuffled frog-leaping algorithm (SFLA) with modification is applied to identify optimal locations for equipment in order to reduce noise level in multi noise plant. Comparatively, SFLA is a recent addition to the family of nontraditional population based search methods that mimics the social and natural behavior of species (frogs). SFLA merges the advantages of particle swarm optimization and genetic algorithm (GA). Though SFLA has been successfully applied to solve many benchmark and real time problems but it limits in convergence speed. In order to improve its performance, the frog with best position in each memeplexes is allowed to slightly modify its position using random walk. This process improves the local search around the best position. The proposal is named as improved local search in SFLA. The simulated results defend the efficacy of the proposal when compared with the differential evolution, GA and SFL algorithms.
Keywords: Shuffled frog-leaping algorithm; SFLA; Global optimization; Noise identification (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-016-0466-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0466-7
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-016-0466-7
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().