EconPapers    
Economics at your fingertips  
 

Software reliability prediction using machine learning techniques

Arunima Jaiswal () and Ruchika Malhotra ()
Additional contact information
Arunima Jaiswal: Amity University
Ruchika Malhotra: Delhi Technological University

International Journal of System Assurance Engineering and Management, 2018, vol. 9, issue 1, No 24, 230-244

Abstract: Abstract Software Reliability is indispensable part of software quality and is one amongst the most inevitable aspect for evaluating quality of a software product. Software industry endures various challenges in developing highly reliable software. Application of machine learning (ML) techniques for software reliability prediction has shown meticulous and remarkable results. In this paper, we propose the use of ML techniques for software reliability prediction and evaluate them based on selected performance criteria. We have applied ML techniques including adaptive neuro fuzzy inference system (ANFIS), feed forward back propagation neural network, general regression neural network, support vector machines, multilayer perceptron, Bagging, cascading forward back propagation neural network, instance based learning, linear regression, M5P, reduced error pruning tree, M5Rules to predict the software reliability on various datasets being chosen from industrial software. Based on the experiments conducted, it was observed that ANFIS yields better results in all the cases and thus can be used for predicting software reliability since it predicts the reliability more accurately and precisely as compared to all other above mentioned techniques. In this study, we also made comparative analysis between cumulative failure data and inter failure time’s data and found that cumulative failure data gives better and more promising results as compared to inter failure time’s data.

Keywords: Software reliability; Assessment; Prediction; Machine learning techniques (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s13198-016-0543-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0543-y

Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198

DOI: 10.1007/s13198-016-0543-y

Access Statistics for this article

International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar

More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0543-y