MR-TP-QFPSO: map reduce two phases quantum fuzzy PSO for feature selection
Shikha Agarwal () and
Prabhat Ranjan ()
Additional contact information
Shikha Agarwal: Central University of South Bihar, CUSB
Prabhat Ranjan: Central University of South Bihar, CUSB
International Journal of System Assurance Engineering and Management, 2018, vol. 9, issue 4, No 14, 888-900
Abstract:
Abstract Feature selection is the utmost requirement to deal with high dimensional datasets. Fuzzy logic and particle swarm optimization are the two very popular soft computing methods which have used for feature selection. In this paper different variants of PSO are summarized to explore the latest development in PSO. The survey has been grouped in three categories; structures based PSO variants, fuzzy logic-PSO hybrids and parallel PSO variants. On the basis of findings of survey, map reduce two phases quantum behaved fuzzy rule PSO (MR-TP-QFPSO) method has been proposed. Quantum is the smallest possible state of any matter. Therefore, in proposed method smallest state of any particle is trit, which is having three values 0, 1 and #. # is included to bring a state of uncertainty where, feature is considered neither accepted nor rejected. In first phase search, feature space is exhaustively explored. During exhaustive initial search (first phase), multiple subsets of features are selected using quantum behaved fuzzy rule PSO (QFPSO). From these multiple subsets, minimum most important features (lower bound features) and maximum range of selected features are selected (upper bound feature subset). In second phase, selected feature subspace (selected in first phase) has been exploited and finally merged with lower bound features. The entire two phases search is highly iterative and it is well known that map reduce frame work can accelerate any iterative task by parallel processing. Therefore, proposed two phases QFPSO (TP-QFPSO) is applied using map reduce (MR-TP-QFPSO). The analysis of proposed algorithm clearly shows that map reduce has decreased the processing time of serial TP-QFPSO algorithm. The MR-TP-QFPSO is compared with other feature selection methods. The results on bench marking datasets show that MR-TP-QFRPSO outperformed the other methods. The reduction in execution time is directly propositional to the number of cluster nodes used. Therefore, as number of nodes is increased execution time will decrease without affecting the performance.
Keywords: Big data; Map reduce; Fuzzy logic; Particle swarm optimization; Feature selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13198-017-0682-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0682-9
Ordering information: This journal article can be ordered from
http://www.springer.com/engineering/journal/13198
DOI: 10.1007/s13198-017-0682-9
Access Statistics for this article
International Journal of System Assurance Engineering and Management is currently edited by P.K. Kapur, A.K. Verma and U. Kumar
More articles in International Journal of System Assurance Engineering and Management from Springer, The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().