Viscous potential flow analysis of magnetohydrodynamic interfacial stability through porous media
M. H. Obied Allah ()
Additional contact information
M. H. Obied Allah: Assiut University
Indian Journal of Pure and Applied Mathematics, 2013, vol. 44, issue 4, 419-441
Abstract:
Abstract In the view of viscous potential flow theory, the hydromagnetic stability of the interface between two infinitely conducting, incompressible plasmas, streaming parallel to the interface and subjected to a constant magnetic field parallel to the streaming direction will be considered. The plasmas are flowing through porous media between two rigid planes and surface tension is taken into account. A general dispersion relation is obtained analytically and solved numerically. For Kelvin-Helmholtz instability problem, the stability criterion is given by a critical value of the relative velocity. On the other hand, a comparison between inviscid and viscous potential flow solutions has been made and it has noticed that viscosity plays a dual role, destabilizing for Rayleigh-Taylor problem and stabilizing for Kelvin-Helmholtz. For Rayleigh-Taylor instability, a new dispersion relation has been obtained in terms of a critical wave number. It has been found that magnetic field, surface tension, and rigid planes have stabilizing effects, whereas critical wave number and porous media have destabilizing effects.
Keywords: Interfacial flows; viscous potential flow; Kelvin Helmholtz instability; Rayleigh-Taylor instability; Magnetic field; Porous media (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-013-0022-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:44:y:2013:i:4:d:10.1007_s13226-013-0022-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-013-0022-y
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().