Quantum stochastic calculus and quantum Gaussian processes
K. R. Parthasarathy ()
Additional contact information
K. R. Parthasarathy: Delhi Centre
Indian Journal of Pure and Applied Mathematics, 2015, vol. 46, issue 6, 781-807
Abstract:
Abstract In this lecture we present a brief outline of boson Fock space stochastic calculus based on the creation, conservation and annihilation operators of free field theory, as given in the 1984 paper of Hudson and Parthasarathy [9]. We show how a part of this architecture yields Gaussian fields stationary under a group action. Then we introduce the notion of semigroups of quasifree completely positive maps on the algebra of all bounded operators in the boson Fock space Γ(ℂ n ) over ℂ n . These semigroups are not strongly continuous but their preduals map Gaussian states to Gaussian states. They were first introduced and their generators were shown to be of the Lindblad type by Vanheuverzwijn [19]. They were recently investigated in the context of quantum information theory by Heinosaari et al. [7]. Here we present the exact noisy Schrödinger equation which dilates such a semigroup to a quantum Gaussian Markov process.
Keywords: Boson Fock space; quantum Ito’s formula; noisy Schrodinger equation; Gaussian state; quantum Gaussian Markov process; quantum stochastic differential equation (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s13226-015-0157-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:46:y:2015:i:6:d:10.1007_s13226-015-0157-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-015-0157-0
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().