EconPapers    
Economics at your fingertips  
 

On integral Cayley sum graphs

Marzieh Amooshahi () and Bijan Taeri ()
Additional contact information
Marzieh Amooshahi: Isfahan University of Technology
Bijan Taeri: Isfahan University of Technology

Indian Journal of Pure and Applied Mathematics, 2016, vol. 47, issue 4, 583-601

Abstract: Abstract Let S be a subset of a finite abelian group G. The Cayley sum graph Cay+(G, S) of G with respect to S is a graph whose vertex set is G and two vertices g and h are joined by an edge if and only if g + h ∈ S. We call a finite abelian group G a Cayley sum integral group if for every subset S of G, Cay+(G, S) is integral i.e., all eigenvalues of its adjacency matrix are integers. In this paper, we prove that all Cayley sum integral groups are represented by Z3 and Zn2 n, n ≥ 1, where Zk is the group of integers modulo k. Also, we classify simple connected cubic integral Cayley sum graphs.

Keywords: Cayley sum graph; integral graph; Cayley sum integral group (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-016-0204-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:47:y:2016:i:4:d:10.1007_s13226-016-0204-5

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-016-0204-5

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:47:y:2016:i:4:d:10.1007_s13226-016-0204-5