EconPapers    
Economics at your fingertips  
 

Eulerian graphs and automorphisms of a maximal graph

Atul Gaur () and Arti Sharma ()
Additional contact information
Atul Gaur: University of Delhi
Arti Sharma: University of Delhi

Indian Journal of Pure and Applied Mathematics, 2017, vol. 48, issue 2, 233-244

Abstract: Abstract Let R be a commutative ring with identity. Let Γ(R) denote the maximal graph corresponding to the non-unit elements of R, i.e., Γ(R) is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we have shown that, for any finite ring R which is not a field, Γ(R) is a Euler graph if and only if R has odd cardinality. Moreover, for any finite ring R ≅ R 1×R 2× · · · ×R n, where the R i is a local ring of cardinality p i αi for all i, and the p i’s are distinct primes, it is shown that Aut(Γ(R)) is isomorphic to a finite direct product of symmetric groups. We have also proved that clique(G(R)’) = χ(G(R)’) for any semi-local ring R, where G(R)’ denote the comaximal graph associated to R.

Keywords: Maximal graphs; comaximal graphs; graph automorphisms (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-017-0224-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:48:y:2017:i:2:d:10.1007_s13226-017-0224-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-017-0224-9

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:48:y:2017:i:2:d:10.1007_s13226-017-0224-9