The Peterson recurrence formula for the chromatic discriminant of a graph
G. Arunkumar ()
Additional contact information
G. Arunkumar: HBNI, CIT Campus
Indian Journal of Pure and Applied Mathematics, 2018, vol. 49, issue 3, 581-587
Abstract:
Abstract The absolute value of the coefficient of q in the chromatic polynomial of a graph G is known as the chromatic discriminant of G and is denoted α(G). There is a well known recurrence formula for α(G) that comes from the deletion-contraction rule for the chromatic polynomial. In this paper we prove another recurrence formula for α(G) that comes from the theory of Kac- Moody Lie algebras. We start with a brief survey on many interesting algebraic and combinatorial interpretations of α(G). We use two of these interpretations (in terms of acyclic orientations and spanning trees) to give two bijective proofs for our recurrence formula of α(G).
Keywords: Chromatic discriminant; acyclic orientations; spanning trees (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-018-0287-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:49:y:2018:i:3:d:10.1007_s13226-018-0287-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-018-0287-2
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().