EconPapers    
Economics at your fingertips  
 

Symmetric biderivations on Banach algebras

Choonkil Park ()
Additional contact information
Choonkil Park: Hanyang University

Indian Journal of Pure and Applied Mathematics, 2019, vol. 50, issue 2, 413-426

Abstract: Abstract In [25], Park introduced the following bi-additive s-functional inequalities (1) $$\matrix{{{\rm{||}}f(x + y, z - w) + f(x - y, z + w) - 2f(x, z) + 2f(y, w){\rm{||}}} \hfill \cr {\;\;\;\; \le \left\| {s\left({2f\left({{{x + y} \over 2}, z - w} \right) + 2f\left({{{x - y} \over 2}, z + w} \right) - 2f(x, z) + 2f(y, w)} \right)} \right\|} \hfill \cr}$$ | | f ( x + y , z − w ) + f ( x − y , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) | | ≤ ∥ s ( 2 f ( x + y 2 , z − w ) + 2 f ( x − y 2 , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) ) ∥ and (2) $$\matrix{{\left\| {2f\left({{{x + y} \over 2}, z - w} \right) + 2f\left({{{x - y} \over 2}, z + w} \right) - 2f(x, z) + 2f(y, w)} \right\|} \hfill \cr {\;\; \le {\rm{||}}s(f(x + y, z - w) + f(x - y, z + w) - 2f(x, z) + 2f(y, w)){\rm{||,}}} \hfill \cr} $$ ∥ 2 f ( x + y 2 , z − w ) + 2 f ( x − y 2 , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) ∥ ≤ | | s ( f ( x + y , z − w ) + f ( x − y , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) ) | | , where s is a fixed nonzero complex number with |s|

Keywords: Symmetric biderivation on C* -algebra; skew-symmetric biderivation on C* -algebra; Hyers-Ulam stability; bi-additive s-functional inequality (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-019-0335-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:50:y:2019:i:2:d:10.1007_s13226-019-0335-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-019-0335-6

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:50:y:2019:i:2:d:10.1007_s13226-019-0335-6