On the system of Pell equations $$x^2-(a^2b^2 {\pm } a)y^2=1$$ x 2 - ( a 2 b 2 ± a ) y 2 = 1 and $$y^2-pz^2=4b^2$$ y 2 - p z 2 = 4 b 2
Salah E. Rihane (),
Euloge B. Tchammou () and
Alain Togbé ()
Additional contact information
Salah E. Rihane: Université des Sciences et de la Technologie Houari-Boumediène (USTHB)
Euloge B. Tchammou: Université d’Abomey-Cavali
Alain Togbé: Purdue University Northwest
Indian Journal of Pure and Applied Mathematics, 2021, vol. 52, issue 1, 224-230
Abstract:
Abstract In this paper, we consider the title simultaneous Pell equations, where $$a\ge 2,b \ge 1$$ a ≥ 2 , b ≥ 1 are positive integers and p is an odd prime. Particularly, we give all the solutions when $$2\le a\le 1000$$ 2 ≤ a ≤ 1000 and $$1\le b\le 1000$$ 1 ≤ b ≤ 1000 .
Keywords: Pell equations; Simultaneous Pell equations; 11D09 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00080-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:52:y:2021:i:1:d:10.1007_s13226-021-00080-1
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-021-00080-1
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().