EconPapers    
Economics at your fingertips  
 

On the number of representations of integers by quaternary quadratic forms

Huixue Lao (), Zhenxing Xie () and Dan Wang ()
Additional contact information
Huixue Lao: Shandong Normal University
Zhenxing Xie: Shandong Normal University
Dan Wang: Qilu University of Technology (Shandong Academy of Sciences)

Indian Journal of Pure and Applied Mathematics, 2021, vol. 52, issue 2, 395-406

Abstract: Abstract Let $$R_1(n), R_2(n)$$ R 1 ( n ) , R 2 ( n ) denote the numbers of representations of a positive integer n by the quaternary quadratic forms $$g_1(x_1,x_2,x_3,x_4)$$ g 1 ( x 1 , x 2 , x 3 , x 4 ) = $$2( x_{1}^{2}+x_1 x_2+ x_{2}^{2})+2x_1x_3 +x_1x_4+ x_2x_3+2x_2x_4+2(x_{3}^{2}+x_3 x_4+x_{4}^{2}), g_2(x_{1},x_2,x_3,x_4)=8( x_{1}^{2}+x_{2}^{2})+x_{3}^{2}+x_{4}^{2}$$ 2 ( x 1 2 + x 1 x 2 + x 2 2 ) + 2 x 1 x 3 + x 1 x 4 + x 2 x 3 + 2 x 2 x 4 + 2 ( x 3 2 + x 3 x 4 + x 4 2 ) , g 2 ( x 1 , x 2 , x 3 , x 4 ) = 8 ( x 1 2 + x 2 2 ) + x 3 2 + x 4 2 , respectively, where $$x_1$$ x 1 , $$x_2$$ x 2 , $$x_3$$ x 3 and $$x_4$$ x 4 are integers. In this paper, we establish the asymptotic formulae for the sums $$\sum \limits _{n\le x}R_i(n)$$ ∑ n ≤ x R i ( n ) and $$\sum \limits _{n\le x}R_i^{2}(n)$$ ∑ n ≤ x R i 2 ( n ) for $$i=1,2$$ i = 1 , 2 .

Keywords: Quaternary quadratic form; Asymptotic formula; Fourier coefficient; Cusp form; 11F30; 11F70 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00064-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00064-1

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-021-00064-1

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00064-1