EconPapers    
Economics at your fingertips  
 

A partial ordering approach to characterize properties of a pair of orthogonal projectors

Oskar Maria Baksalary () and Götz Trenkler ()
Additional contact information
Oskar Maria Baksalary: Adam Mickiewicz University
Götz Trenkler: Dortmund University of Technology

Indian Journal of Pure and Applied Mathematics, 2021, vol. 52, issue 2, 323-334

Abstract: Abstract It is known that within the set of orthogonal projectors (Hermitian idempotent matrices) certain matrix partial orderings coincide in the sense that when two orthogonal projectors are ordered with respect to one of the orderings, then they are also ordered with respect to the others. This concerns, inter alia, the star, minus, diamond, sharp, core, and Löwner orderings. The situation changes, though, when instead of two orthogonal projectors, various functions of the pair (being either no longer Hermitian or no longer idempotent) are compared. The present paper provides an extensive investigation of the matrix partial orderings of functions of two orthogonal projectors. In addition to the six orderings mentioned above, three further binary functions are covered by the analysis, one of which is the space preordering. A particular attention is paid to the requirements that either product, sum, or difference of two orthogonal projectors is itself an orthogonal projector, i.e., inherits both features, Hermitianness and idempotency. Links of the results obtained with the research areas of applied origin (e.g., physics and statistics) are pointed out as well.

Keywords: Hermitian idempotent matrix; Commutativity; Generalized inverse; Partitioned matrix; 15A09; 15A27; 15B57 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00138-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00138-0

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-021-00138-0

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:52:y:2021:i:2:d:10.1007_s13226-021-00138-0