EconPapers    
Economics at your fingertips  
 

A fractional $$p(x,\cdot )$$ p ( x, · ) -Laplacian problem involving a singular term

A. Mokhtari (), K. Saoudi () and N. T. Chung ()
Additional contact information
A. Mokhtari: University of M’sila
K. Saoudi: University of Imam Abdulrahman Bin Faisal
N. T. Chung: Quang Binh University

Indian Journal of Pure and Applied Mathematics, 2022, vol. 53, issue 1, 100-111

Abstract: Abstract This paper deals with a class of singular problems involving the fractional $$p(x,\cdot )$$ p ( x , · ) -Laplace operator of the form $$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p(x,\cdot )}u(x)= \frac{\lambda }{u^{\gamma (x)}}+u^{q(x)-1} &{} \hbox {in }\Omega , \\ u>0, \;\;\text {in}\;\; \Omega &{} \hbox {} \\ u=0 \;\;\text {on}\;\;{\mathbb {R}}^N\setminus \Omega , &{} \hbox {} \end{array} \right. \end{aligned}$$ ( - Δ ) p ( x , · ) s u ( x ) = λ u γ ( x ) + u q ( x ) - 1 in Ω , u > 0 , in Ω u = 0 on R N \ Ω , where $$\Omega $$ Ω is a smooth bounded domain in $${\mathbb {R}}^N$$ R N ( $$N\ge 3$$ N ≥ 3 ), $$0 0$$ λ > 0 small enough. To our best knowledge, this paper is one of the first attempts in the study of singular problems involving fractional $$p(x,\cdot )$$ p ( x , · ) -Laplace operators.

Keywords: Fractional $$p(x; \cdot )$$ p ( x; · ) -Laplace operators; Singular equations; Minimization methods; Fractional Sobolev spaces; 35J60; 35J91, 35S30, 46E35, 58E30 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00037-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00037-4

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-021-00037-4

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00037-4