Relations among representations of integers by certain quadratic forms
Nayandeep Deka Baruah () and
Hirakjyoti Das ()
Additional contact information
Nayandeep Deka Baruah: Tezpur University
Hirakjyoti Das: Tezpur University
Indian Journal of Pure and Applied Mathematics, 2022, vol. 53, issue 3, 672-682
Abstract:
Abstract Let $$N(c_1,c_2,\ldots , c_k;n),$$ N ( c 1 , c 2 , … , c k ; n ) , $$r(c_1,c_2,\ldots , c_k;n),$$ r ( c 1 , c 2 , … , c k ; n ) , and $$t(c_1,c_2,\ldots , c_k;n)$$ t ( c 1 , c 2 , … , c k ; n ) count the representations of a positive integer n in the quadratic forms $$\begin{aligned}&c_1\left( x_1^2+x_1 x_2+x_2^2\right) +c_2\left( x_3^2+x_3 x_4+x_4^2\right) +\cdots +c_k\big (x_{2k-1}^2+x_{2k-1}x_{2k}+x_{2k}^2\big ), \\&\quad c_1x_1^2+c_2x_2^2+\cdots +c_kx_k^2, \\&\quad c_1x_1(x_1+1)/2+c_2x_2(x_2+1)/2+\cdots +c_kx_k(x_k+1)/2, \end{aligned}$$ c 1 x 1 2 + x 1 x 2 + x 2 2 + c 2 x 3 2 + x 3 x 4 + x 4 2 + ⋯ + c k ( x 2 k - 1 2 + x 2 k - 1 x 2 k + x 2 k 2 ) , c 1 x 1 2 + c 2 x 2 2 + ⋯ + c k x k 2 , c 1 x 1 ( x 1 + 1 ) / 2 + c 2 x 2 ( x 2 + 1 ) / 2 + ⋯ + c k x k ( x k + 1 ) / 2 , respectively, where $$c_i$$ c i ’s and $$x_i$$ x i ’s are integers. Using Ramanujan’s theta functions $$\varphi (q)$$ φ ( q ) , $$\psi (q)$$ ψ ( q ) , Borweins’ cubic theta function a(q), and simple dissecting techniques, we find relations satisfied by $$N(c_1,c_2,\ldots , c_k;n)$$ N ( c 1 , c 2 , … , c k ; n ) , $$r(c_1,c_2,\ldots , c_{2k};n)$$ r ( c 1 , c 2 , … , c 2 k ; n ) , and $$t(c_1,c_2,\ldots , c_{2k};n)$$ t ( c 1 , c 2 , … , c 2 k ; n ) when $$1
Keywords: Theta function; Cubic theta function; Quadratic form; 11E25; 11E20 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-021-00158-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:53:y:2022:i:3:d:10.1007_s13226-021-00158-w
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-021-00158-w
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().