EconPapers    
Economics at your fingertips  
 

A note on cubic residues modulo $$\varvec{n}$$ n

V. P. Ramesh, R. Gowtham and Saswati Sinha
Additional contact information
V. P. Ramesh: Central University of Tamil Nadu
R. Gowtham: Indian Institute of Technology Madras
Saswati Sinha: Central University of Tamil Nadu

Indian Journal of Pure and Applied Mathematics, 2023, vol. 54, issue 1, 62-65

Abstract: Abstract The set of all cubic residues of any natural number n is denoted by $$S_n^{(3)}$$ S n ( 3 ) . In this article, we show that, $$\begin{aligned} \vert S_n^{(3)} \vert = \left\{ \begin{array}{ll} 3^{-\omega (n_1)}\phi (n_1)\phi (n_2), &{}\text {if} ~~ n=n_1n_2 \\ 3^{-\omega (n_1)}\phi (n_1)\phi (3n_2), &{}\text {if} ~~ n=3n_1n_2 \\ 3^{-\omega (n_1)}\phi (n_1)\phi (3^{a-1}n_2), &{}\text {if} ~~ n=3^an_1n_2, ~a>1, \end{array} \right. \end{aligned}$$ | S n ( 3 ) | = 3 - ω ( n 1 ) ϕ ( n 1 ) ϕ ( n 2 ) , if n = n 1 n 2 3 - ω ( n 1 ) ϕ ( n 1 ) ϕ ( 3 n 2 ) , if n = 3 n 1 n 2 3 - ω ( n 1 ) ϕ ( n 1 ) ϕ ( 3 a - 1 n 2 ) , if n = 3 a n 1 n 2 , a > 1 , where $$(n_1n_2,3)=1$$ ( n 1 n 2 , 3 ) = 1 , $$n_1$$ n 1 comprises of primes $$p\equiv 1 \pmod 3$$ p ≡ 1 ( mod 3 ) , $$n_2$$ n 2 comprises of primes $$p\equiv 2 \pmod 3$$ p ≡ 2 ( mod 3 ) and $$\omega (n_1)$$ ω ( n 1 ) denotes the number of distinct prime factors of $$n_1$$ n 1 . Consequently, every element of $$ {({\mathbb {Z}}/n{\mathbb {Z}})}^*$$ ( Z / n Z ) ∗ is a cubic residue modulo n if and only if, $$n=3,\prod \limits _{i=1}^{k} p_i^{\ell _i}$$ n = 3 , ∏ i = 1 k p i ℓ i or $$3\prod \limits _{i=1}^{k} p_i^{\ell _i}$$ 3 ∏ i = 1 k p i ℓ i where $$p_i$$ p i ’s are primes such that $$p_i\equiv 2 \pmod 3$$ p i ≡ 2 ( mod 3 ) and $$k,\ell _i$$ k , ℓ i ’s are natural numbers.

Keywords: Cubic residues; Congruences; Primes; 11A07; 11A41 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-022-00230-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:54:y:2023:i:1:d:10.1007_s13226-022-00230-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-022-00230-z

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:54:y:2023:i:1:d:10.1007_s13226-022-00230-z