EconPapers    
Economics at your fingertips  
 

Existence and concentration result for fractional Choquard equations in $$\pmb {{\mathbb {R}}^{N}}$$ R N

Guofeng Che (), Yu Su () and Haibo Chen ()
Additional contact information
Guofeng Che: Guangdong University of Technology
Yu Su: Anhui University of Science and Technology
Haibo Chen: Central South University

Indian Journal of Pure and Applied Mathematics, 2023, vol. 54, issue 1, 182-199

Abstract: Abstract In this paper, we consider the following fractional Choquard equations with competing potentials: $$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \varepsilon ^{2\alpha }(-\triangle )^{\alpha }u+V(x)u=\varepsilon ^{\mu -N}f(x,u) , \ \ \text{ in } {\mathbb {R}}^{N}\\ u\in H^{\alpha }({\mathbb {R}}^{N}), \end{array} \right. \end{aligned}$$ ε 2 α ( - ▵ ) α u + V ( x ) u = ε μ - N f ( x , u ) , in R N u ∈ H α ( R N ) , where $$f(x,u)=\left( \int _{{\mathbb {R}}^{N}}\frac{K(y)|u(y)|^{p}}{|x-y|^{\mu }}\mathrm {d}y\right) K(x)|u|^{p-2}u+ \left( \int _{{\mathbb {R}}^{N}}\frac{Q(y)|u(y)|^{q}}{|x-y|^{\mu }}\mathrm {d}y\right) Q(x)|u|^{q-2} u,$$ f ( x , u ) = ∫ R N K ( y ) | u ( y ) | p | x - y | μ d y K ( x ) | u | p - 2 u + ∫ R N Q ( y ) | u ( y ) | q | x - y | μ d y Q ( x ) | u | q - 2 u , $$\varepsilon >0$$ ε > 0 is a parameter, $$\alpha \in (0,1)$$ α ∈ ( 0 , 1 ) , $$0 2\alpha $$ 0 2 α , $$\frac{2N-\mu }{N}

Keywords: Fractional Choquard equations; Nehari manifold; Ground state; Concentration; Variational methods; 35J60; 35J99 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s13226-022-00242-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:54:y:2023:i:1:d:10.1007_s13226-022-00242-9

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226

DOI: 10.1007/s13226-022-00242-9

Access Statistics for this article

Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke

More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:indpam:v:54:y:2023:i:1:d:10.1007_s13226-022-00242-9