Note on Lie ideals with symmetric bi-derivations in semiprime rings
Emine Koç Sögütcü () and
Shuliang Huang ()
Additional contact information
Emine Koç Sögütcü: Cumhuriyet University
Shuliang Huang: Chuzhou University
Indian Journal of Pure and Applied Mathematics, 2023, vol. 54, issue 2, 608-618
Abstract:
Abstract Let R be a semiprime ring, U a square-closed Lie ideal of R and $$D:R\times R\rightarrow R$$ D : R × R → R a symmetric bi-derivation and d be the trace of D. In the present paper, we prove that the R contains a nonzero central ideal if any one of the following holds: i) $$d\left( x\right) y\pm xg(y)\in Z,$$ d x y ± x g ( y ) ∈ Z , ii) $$[d(x),y]=\pm [x,g(y)],$$ [ d ( x ) , y ] = ± [ x , g ( y ) ] , iii) $$d(x)\circ y=\pm x\circ g(y),$$ d ( x ) ∘ y = ± x ∘ g ( y ) , iv) $$[d(x),y]=\pm x\circ g(y),$$ [ d ( x ) , y ] = ± x ∘ g ( y ) , v) $$d([x,y])=[d(x),y]+[d(y),x],$$ d ( [ x , y ] ) = [ d ( x ) , y ] + [ d ( y ) , x ] , vi) $$d(xy)\pm xy\in Z,$$ d ( x y ) ± x y ∈ Z , vii) $$d(xy)\pm yx\in Z,$$ d ( x y ) ± y x ∈ Z , viii) $$d(xy)\pm [x,y]\in Z,$$ d ( x y ) ± [ x , y ] ∈ Z , ix) $$d(xy)\pm x\circ y\in Z,$$ d ( x y ) ± x ∘ y ∈ Z , x) $$g(xy)+d(x)d(y)\pm xy\in Z,$$ g ( x y ) + d ( x ) d ( y ) ± x y ∈ Z , xi) $$g(xy)+d(x)d(y)\pm yx\in Z,$$ g ( x y ) + d ( x ) d ( y ) ± y x ∈ Z , xii) $$g([x,y])+[d(x),d(y)]\pm [x,y]\in Z,$$ g ( [ x , y ] ) + [ d ( x ) , d ( y ) ] ± [ x , y ] ∈ Z , xiii) $$g(x\circ y)+d(x)\circ d(y)\pm x\circ y\in Z,$$ g ( x ∘ y ) + d ( x ) ∘ d ( y ) ± x ∘ y ∈ Z , for all $$x,y\in U,$$ x , y ∈ U , where $$G:R\times R\rightarrow R$$ G : R × R → R is symmetric bi-derivation such that g is the trace of G.
Keywords: Semiprime ring; Lie ideal; Derivation; Bi-derivation; Symmetric bi-derivation.; 16W25; 16W10; 16U80; 16N60 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-022-00279-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:54:y:2023:i:2:d:10.1007_s13226-022-00279-w
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-022-00279-w
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().