Evaluation of the convolution sum $$\displaystyle \varvec{\sum _{al+bm=n} \sigma (l)\sigma _ 3 (m) }$$ ∑ a l + b m = n σ ( l ) σ 3 ( m ) for $$\varvec{(a,b) = (1,7), (7,1), (1,8), (8,1), (1,9), (9,1)}$$ ( a, b ) = ( 1, 7 ), ( 7, 1 ), ( 1, 8 ), ( 8, 1 ), ( 1, 9 ), ( 9, 1 ) and representations by certain quadratic forms in twelve variables
Şaban Alaca () and
Yavuz Kesicioğlu ()
Additional contact information
Şaban Alaca: Carleton University
Yavuz Kesicioğlu: Recep Tayyip Erdogan University
Indian Journal of Pure and Applied Mathematics, 2025, vol. 56, issue 1, 99-112
Abstract:
Abstract For a positive integer n we evaluate the convolution sum $$\displaystyle {\sum _{al+bm=n} \hspace{-3mm} \sigma (l)\sigma _ 3 (m) }$$ ∑ a l + b m = n σ ( l ) σ 3 ( m ) for $$(a,b) = (1,7)$$ ( a , b ) = ( 1 , 7 ) , (7, 1), (1, 8), (8, 1), (1, 9) and (9, 1). We then use these evaluations together with known evaluations of other convolution sums to determine the numbers of representations of n by the forms $$ x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2(x_5^2 + x_6^2 + x_7^2 + x_8^2 + x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2), ~x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 + 2(x_9^2 + x_{10}^2 + x_{11}^2 + x_{12}^2), ~x_1^2 + x_1x_2 + x_2^2 +x_3^2 + x_3x_4 + x_4^2 + 3(x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2 + x_9^2 + x_9x_{10} + x_{10}^2 + x_{11}^2 + x_{11}x_{12} + x_{12}^2)$$ x 1 2 + x 2 2 + x 3 2 + x 4 2 + 2 ( x 5 2 + x 6 2 + x 7 2 + x 8 2 + x 9 2 + x 10 2 + x 11 2 + x 12 2 ) , x 1 2 + x 2 2 + x 3 2 + x 4 2 + x 5 2 + x 6 2 + x 7 2 + x 8 2 + 2 ( x 9 2 + x 10 2 + x 11 2 + x 12 2 ) , x 1 2 + x 1 x 2 + x 2 2 + x 3 2 + x 3 x 4 + x 4 2 + 3 ( x 5 2 + x 5 x 6 + x 6 2 + x 7 2 + x 7 x 8 + x 8 2 + x 9 2 + x 9 x 10 + x 10 2 + x 11 2 + x 11 x 12 + x 12 2 ) , $$x_1^2 + x_1x_2 + x_2^2 +x_3^2 + x_3x_4 + x_4^2 + x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2 + 3(x_9^2 + x_9x_{10} + x_{10}^2 + x_{11}^2 + x_{11}x_{12} + x_{12}^2)$$ x 1 2 + x 1 x 2 + x 2 2 + x 3 2 + x 3 x 4 + x 4 2 + x 5 2 + x 5 x 6 + x 6 2 + x 7 2 + x 7 x 8 + x 8 2 + 3 ( x 9 2 + x 9 x 10 + x 10 2 + x 11 2 + x 11 x 12 + x 12 2 ) . We use a modular form approach.
Keywords: Convolution sums; Sum of divisors function; Eisenstein series; Modular forms; Cusp forms; Dedekind eta function; Quadratic forms; Representations; 11A25; 11E20; 11E25; 11F11; 11F20; 11F27 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-023-00459-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:56:y:2025:i:1:d:10.1007_s13226-023-00459-2
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-023-00459-2
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().