Identities related to a pair of generalized skew derivations on Lie ideals
Vincenzo Filippis (),
Junaid Nisar () and
Nadeem ur Rehman ()
Additional contact information
Vincenzo Filippis: University of Messina
Junaid Nisar: Symbiosis International University
Nadeem ur Rehman: Aligarh Muslim University
Indian Journal of Pure and Applied Mathematics, 2025, vol. 56, issue 2, 645-658
Abstract:
Abstract Let $$\mathfrak {S}$$ S be a prime ring with $$char({\mathfrak {S}}) \ne 2$$ c h a r ( S ) ≠ 2 , $${\mathcal {Q}}_r$$ Q r its right Martindale quotient ring, $${\mathcal {C}}$$ C its extended centroid, L a non-central Lie ideal of $${\mathfrak {S}}$$ S , $${\mathcal {F}}$$ F and $${\mathcal {G}}$$ G two generalized skew derivations of $${\mathfrak {S}}$$ S . If $${\mathcal {F}}({\mathfrak {r}}{\mathfrak {s}})\pm {\mathcal {G}}({\mathfrak {s}}){\mathcal {G}}({\mathfrak {r}}) \pm {\mathfrak {s}}{\mathfrak {r}}=0$$ F ( r s ) ± G ( s ) G ( r ) ± s r = 0 , for any $${\mathfrak {r}},{\mathfrak {s}} \in L$$ r , s ∈ L , then one of the following holds: (1) $${\mathcal {F}}=0$$ F = 0 and there exists $$\lambda \in {\mathcal {C}}$$ λ ∈ C such that $${\mathcal {G}}({\mathfrak {r}})=\lambda {\mathfrak {r}}$$ G ( r ) = λ r , for any $${\mathfrak {r}}\in {\mathfrak {S}}$$ r ∈ S , with $$\lambda ^2+1=0$$ λ 2 + 1 = 0 ; (2) $${\mathfrak {S}}$$ S satisfies the standard polynomial identity $$s_4({\mathfrak {r}}_1,\ldots ,{\mathfrak {r}}_4)$$ s 4 ( r 1 , … , r 4 ) .
Keywords: Prime ring; Derivation; Skew derivation; Generalized skew derivation; Extended centroid; 16W25; 16N60 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s13226-023-00508-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:indpam:v:56:y:2025:i:2:d:10.1007_s13226-023-00508-w
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/13226
DOI: 10.1007/s13226-023-00508-w
Access Statistics for this article
Indian Journal of Pure and Applied Mathematics is currently edited by Nidhi Chandhoke
More articles in Indian Journal of Pure and Applied Mathematics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().