Object-stack: An object-oriented approach for top-k keyword querying over fuzzy XML
Ting Li and
Zongmin Ma ()
Additional contact information
Ting Li: Northeastern University
Zongmin Ma: Nanjing University of Aeronautics and Astronautics
Information Systems Frontiers, 2017, vol. 19, issue 3, No 16, 669-697
Abstract:
Abstract Keyword search is the most popular technique of searching information from XML (eXtensible markup language) document. It enables users to easily access XML data without learning the structure query language or studying the complex data schemas. Existing traditional keyword query methods are mainly based on LCA (lowest common ancestor) semantics, in which the returned results match all keywords at the granularity of elements. In many practical applications, information is often uncertain and vague. As a result, how to identify useful information from fuzzy data is becoming an important research topic. In this paper, we focus on the issue of keyword querying on fuzzy XML data at the granularity of objects. By introducing the concept of “object tree”, we propose the query semantics for keyword query at object-level. We find the minimum whole matching result object trees which contain all keywords and the partial matching result object trees which contain partial keywords, and return the root nodes of these result object trees as query results. For effectively and accurately identifying the top-K answers with the highest scores, we propose a score mechanism with the consideration of tf*idf document relevance, users’ preference and possibilities of results. We propose a stack-based algorithm named object-stack to obtain the top-K answers with the highest scores. Experimental results show that the object-stack algorithm outperforms the traditional XML keyword query algorithms significantly, and it can get high quality of query results with high search efficiency on the fuzzy XML document.
Keywords: Keyword query; Fuzzy XML; Object-oriented; Top-K; Preference (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10796-017-9748-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v:19:y:2017:i:3:d:10.1007_s10796-017-9748-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796
DOI: 10.1007/s10796-017-9748-0
Access Statistics for this article
Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao
More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().