Product recommendation with latent review topics
Juheng Zhang () and
Selwyn Piramuthu ()
Additional contact information
Juheng Zhang: University of Massachusetts
Selwyn Piramuthu: University of Florida
Information Systems Frontiers, 2018, vol. 20, issue 3, No 13, 617-625
Abstract:
Abstract Online customer reviews complement information from product and service providers. While the latter is directly from the source of the product and/or service, the former is generally from users of these products and/or services. Clearly, these two information sets are generated from different perspectives with possibly different sets of intentions. For a prospective customer, both these perspectives together provide a complementary set of information and support their purchase decisions. Given the different perspective and incentive structure, the information from these two source sets tends to be necessarily biased, clearly with the high probability of negative information omission from that provided by the product/service providers. Moreover, customers oftentimes face information overload during their attempts at deciphering existing online customer reviews. We attempt to alleviate this through mining hidden information in online customer reviews. We use a variant of the Latent Dirichlet Allocation (LDA) model and clustering to generate equivalent options that the customer could then use in their purchase decisions. We illustrate this using online hotel review data.
Keywords: Latent Dirichlet Allocation; Hidden information; Online reviews (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s10796-016-9697-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v:20:y:2018:i:3:d:10.1007_s10796-016-9697-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796
DOI: 10.1007/s10796-016-9697-z
Access Statistics for this article
Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao
More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().