EconPapers    
Economics at your fingertips  
 

RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers

Lawrence Bunnell (), Kweku-Muata Osei-Bryson and Victoria Y. Yoon
Additional contact information
Lawrence Bunnell: Virginia Commonwealth University
Kweku-Muata Osei-Bryson: Virginia Commonwealth University
Victoria Y. Yoon: Virginia Commonwealth University

Information Systems Frontiers, 2020, vol. 22, issue 6, No 8, 1377-1418

Abstract: Abstract Scholarly research has extensively examined a number of issues and challenges affecting recommender systems (e.g. ‘cold-start’, ‘scrutability’, ‘trust’, ‘context’, etc.). However, a comprehensive knowledge classification of the issues involved with recommender systems research has yet to be developed. A holistic knowledge representation of the issues affecting a domain is critical for research advancement. The aim of this study is to advance scholarly research within the domain of recommender systems through formal knowledge classification of issues and their relationships to one another within recommender systems research literature. In this study, we employ a rigorous ontology engineering process for development of a recommender system issues ontology. This ontology provides a formal specification of the issues affecting recommender systems research and development. The ontology answers such questions as, “What issues are associated with ‘trust’ in recommender systems research?”, “What are issues associated with improving and evaluating the ‘performance’ of a recommender system?” or “What ‘contextual’ factors might a recommender systems developer wish to consider in order to improve the relevancy and usefulness of recommendations?” Additionally, as an intermediate representation step in the ontology acquisition process, a concept map of recommender systems issues has been developed to provide conceptual visualization of the issues so that researchers may discern broad themes as well as relationships between concepts. These knowledge representations may aid future researchers wishing to take an integrated approach to addressing the challenges and limitations associated with current recommender systems research.

Keywords: Recommender systems issues; Recommendation agents; Thematic analysis; Concept mapping; Ontology acquisition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10796-019-09935-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v:22:y:2020:i:6:d:10.1007_s10796-019-09935-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796

DOI: 10.1007/s10796-019-09935-9

Access Statistics for this article

Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao

More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:infosf:v:22:y:2020:i:6:d:10.1007_s10796-019-09935-9