Estimating participants for knowledge-intensive tasks in a network of crowdsourcing marketplaces
Yiwei Gong ()
Additional contact information
Yiwei Gong: Wuhan University
Information Systems Frontiers, 19 pages
Abstract:
Abstract Crowdsourcing has become an increasingly attractive practice for companies to abstain on-demand workforce and higher level of flexibility in open contexts. While knowledge-intensive crowdsourcing is expected to be prosperous, most current crowdsourcing calls are still about general and low-priced tasks. An obstacle of conducing knowledge-intensive crowdsourcing is the lack of diversity of expertise and the small scale of crowd in isolated crowdsourcing marketplaces. In this paper, a network of crowdsourcing marketplaces is envisioned for efficient knowledge-intensive crowdsourcing and engagement of massive and diverse participants across different marketplaces. Based on an algorithm for estimating participants for knowledge-intensive crowdsourcing tasks, an experiment with 100 simulations indicates that conducting crowdsourcing tasks in a network of crowdsourcing marketplaces results in higher customer satisfaction than doing that in isolated marketplaces. This finding advocates the development of a network of crowdsourcing marketplaces to open up the potential of knowledge-intensive crowdsourcing.
Keywords: Knowledge-intensive crowdsourcing; Flexibility; Search friction; Estimation algorithm (search for similar items in EconPapers)
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10796-016-9674-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9674-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10796
DOI: 10.1007/s10796-016-9674-6
Access Statistics for this article
Information Systems Frontiers is currently edited by Ram Ramesh and Raghav Rao
More articles in Information Systems Frontiers from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().