A study on cyclic bandwidth sum
Ying-Da Chen and
Jing-Ho Yan ()
Additional contact information
Ying-Da Chen: Aletheia University
Jing-Ho Yan: Aletheia University
Journal of Combinatorial Optimization, 2007, vol. 14, issue 2, No 18, 295-308
Abstract:
Abstract Suppose G is a graph of p vertices. A proper labeling f of G is a one-to-one mapping f:V(G)→{1,2,…,p}. The cyclic bandwidth sum of G with respect to f is defined by CBS f (G)=∑ uv∈E(G)|f(v)−f(u)| p , where |x| p =min {|x|,p−|x|}. The cyclic bandwidth sum of G is defined by CBS(G)=min {CBS f (G): f is a proper labeling of G}. The bandwidth sum of G with respect to f is defined by BS f (G)=∑ uv∈E(G)|f(v)−f(u)|. The bandwidth sum of G is defined by BS(G)=min {BS f (G): f is a proper labeling of G}. In this paper, we give a necessary and sufficient condition for BS(G)=CBS(G), and use this to show that BS(T)=CBS(T) when T is a tree. We also find cyclic bandwidth sums of complete bipartite graphs.
Keywords: Proper labeling; Cyclic bandwidth sum; Complete bipartite graph; Tree; Cyclic displacement; Zero cycle; Extended labeling; Balanced 2-color (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-007-9051-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:14:y:2007:i:2:d:10.1007_s10878-007-9051-y
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-007-9051-y
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().