L(j,k)- and circular L(j,k)-labellings for the products of complete graphs
Peter Che Bor Lam (),
Wensong Lin and
Jianzhuan Wu
Additional contact information
Peter Che Bor Lam: Hong Kong Baptist University
Wensong Lin: Hong Kong Baptist University
Jianzhuan Wu: Southeast University
Journal of Combinatorial Optimization, 2007, vol. 14, issue 2, No 12, 219-227
Abstract:
Abstract Let j and k be two positive integers with j≥k. An L(j,k)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G such that the difference between labels of any two adjacent vertices is at least j, and the difference between labels of any two vertices that are at distance two apart is at least k. The minimum range of labels over all L(j,k)-labellings of a graph G is called the λ j,k -number of G, denoted by λ j,k (G). A σ(j,k)-circular labelling with span m of a graph G is a function f:V(G)→{0,1,…,m−1} such that |f(u)−f(v)| m ≥j if u and v are adjacent; and |f(u)−f(v)| m ≥k if u and v are at distance two apart, where |x| m =min {|x|,m−|x|}. The minimum m such that there exists a σ(j,k)-circular labelling with span m for G is called the σ j,k -number of G and denoted by σ j,k (G). The λ j,k -numbers of Cartesian products of two complete graphs were determined by Georges, Mauro and Stein ((2000) SIAM J Discret Math 14:28–35). This paper determines the λ j,k -numbers of direct products of two complete graphs and the σ j,k -numbers of direct products and Cartesian products of two complete graphs.
Keywords: λ j; k -number; σ j; k -number; Cartesian product; Direct product (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-007-9057-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:14:y:2007:i:2:d:10.1007_s10878-007-9057-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-007-9057-5
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().