Novel quadratic programming approach for time series clustering with biomedical application
Wanpracha Art Chaovalitwongse ()
Additional contact information
Wanpracha Art Chaovalitwongse: Rutgers University
Journal of Combinatorial Optimization, 2008, vol. 15, issue 3, No 2, 225-241
Abstract:
Abstract Fundamental problems in data mining mainly involve discrete decisions based on numerical analyses of data (e.g., class assignment, feature selection, data categorization, identifying outlier samples). These decision-making problems in data mining are combinatorial in nature and can naturally be formulated as discrete optimization problems. One of the most widely studied problems in data mining is clustering. In this paper, we propose a new optimization model for hierarchical clustering based on quadratic programming and later show that this model is compact and scalable. Application of this clustering technique in epilepsy, the second most common brain disorder, is a case point in this study. In our empirical study, we will apply the proposed clustering technique to treatment problems in epilepsy through the brain dynamics analysis of electroencephalogram (EEG) recordings. This study is a proof of concept of our hypothesis that epileptic brains tend to be more synchronized (clustered) during the period before a seizure than a normal period. The results of this study suggest that data mining research might be able to revolutionize current diagnosis and treatment of epilepsy as well as give a greater understanding of brain functions (and other complex systems) from a system perspective.
Keywords: EEG; Data mining; Quadratic programming; Concave optimization; Epilepsy; Clustering (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-007-9117-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:15:y:2008:i:3:d:10.1007_s10878-007-9117-x
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-007-9117-x
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().