EconPapers    
Economics at your fingertips  
 

A new recombination lower bound and the minimum perfect phylogenetic forest problem

Yufeng Wu () and Dan Gusfield ()
Additional contact information
Yufeng Wu: University of Connecticut
Dan Gusfield: University of California

Journal of Combinatorial Optimization, 2008, vol. 16, issue 3, No 3, 229-247

Abstract: Abstract Understanding recombination is a central problem in population genetics. In this paper, we address an established computational problem in this area: compute lower bounds on the minimum number of historical recombinations for generating a set of sequences (Hudson and Kaplan in Genetics 111, 147–164, 1985; Myers and Griffiths in Genetics 163, 375–394, 2003; Gusfield et al. in Discrete Appl. Math. 155, 806–830, 2007; Bafna and Bansal in IEEE/ACM Trans. Comput. Biol. Bioinf. 1, 78–90, 2004 and in J. Comput. Biol. 13, 501–521, 2006; Song et al. in Bioinformatics 421, i413–i244, 2005). In particular, we propose a new recombination lower bound: the forest bound. We show that the forest bound can be formulated as the minimum perfect phylogenetic forest problem, a natural extension to the classic binary perfect phylogeny problem, which may be of interests on its own. We then show that the forest bound is provably higher than the optimal haplotype bound (Myers and Griffiths in Genetics 163, 375–394, 2003), a very good lower bound in practice (Song et al. in Bioinformatics 421, i413–i422, 2005). We prove that, like several other lower bounds (Bafna and Bansal in J. Comput. Biol. 13, 501–521, 2006), computing the forest bound is NP-hard. Finally, we describe an integer linear programming (ILP) formulation that computes the forest bound precisely for certain range of data. Simulation results show that the forest bound may be useful in computing lower bounds for low quality data.

Keywords: Recombination; Lower bound on the minimum number of recombination; Ancestral recombination graph; Population genetics; Computational complexity (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10878-007-9129-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:16:y:2008:i:3:d:10.1007_s10878-007-9129-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878

DOI: 10.1007/s10878-007-9129-6

Access Statistics for this article

Journal of Combinatorial Optimization is currently edited by Thai, My T.

More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcomop:v:16:y:2008:i:3:d:10.1007_s10878-007-9129-6