The weighted link ring loading problem
Qingqin Nong (),
Jinjiang Yuan and
Yixun Lin
Additional contact information
Qingqin Nong: Ocean University of China
Jinjiang Yuan: Zhengzhou University
Yixun Lin: Zhengzhou University
Journal of Combinatorial Optimization, 2009, vol. 18, issue 1, No 3, 38-50
Abstract:
Abstract In the weighted link ring loading problem, we are given an n-node undirected ring network. Each of its links is associated with a weight. Traffic demands are given for each pair of nodes in the ring. The load of a link is the sum of the flows routed through the link, and the weighted load of a link is the product of its weight and the smallest integer not less than its load. The objective of the problem is to find a routing scheme such that the maximum weighted load on the ring is minimized. In this paper we consider three variants: (i) demands may be split into two parts, and then each part is sent in a different direction; (ii) demands are allowed to be split into two parts but restricted to be integrally split; (iii) each demand must be entirely routed in either of the two directions, clockwise or counterclockwise. We first prove that the first variant is polynomially solvable. We then present a pseudo-polynomial time algorithm for the second one. Finally, for the third one, whose NP-hardness can be drawn from the result in the literature, we derive a polynomial-time approximation scheme (PTAS).
Keywords: Ring loading problem; Weighted load; Polynomial-time approximation scheme (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10878-007-9136-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:18:y:2009:i:1:d:10.1007_s10878-007-9136-7
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-007-9136-7
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().