Upper paired-domination in claw-free graphs
Paul Dorbec () and
Michael A. Henning ()
Additional contact information
Paul Dorbec: Université Paris Sud 11
Michael A. Henning: University of KwaZulu-Natal
Journal of Combinatorial Optimization, 2011, vol. 22, issue 2, No 8, 235-251
Abstract:
Abstract A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by Γpr(G). We establish bounds on Γpr(G) for connected claw-free graphs G in terms of the number n of vertices in G with given minimum degree δ. We show that Γpr(G)≤4n/5 if δ=1 and n≥3, Γpr(G)≤3n/4 if δ=2 and n≥6, and Γpr(G)≤2n/3 if δ≥3. All these bounds are sharp. Further, if n≥6 the graphs G achieving the bound Γpr(G)=4n/5 are characterized, while for n≥9 the graphs G with δ=2 achieving the bound Γpr(G)=3n/4 are characterized.
Keywords: Claw-free graphs; Minimum degree; Upper paired-domination (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10878-009-9275-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcomop:v:22:y:2011:i:2:d:10.1007_s10878-009-9275-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10878
DOI: 10.1007/s10878-009-9275-0
Access Statistics for this article
Journal of Combinatorial Optimization is currently edited by Thai, My T.
More articles in Journal of Combinatorial Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().